Reverse Integer

To solve this coding challenge, you need to reverse the digits of a 32-bit signed integer while considering edge cases such as the range limits of a 32-bit signed integer. Here's a detailed explanation of how to approach this problem followed by the pseudocode.

Explanation

Problem Breakdown:
  1. Input and Output : You are given an integer
    x
    and need to return its digits in reverse order. If reversing the integer causes it to fall out of the 32-bit signed integer range (i.e.,
    [-2^31, 2^31 - 1]
    ), return
    0
    .
  2. 32-bit Signed Integer Range : The range for a signed 32-bit integer is from -2,147,483,648 to 2,147,483,647.
  3. Sign Handling : The integer
    x
    can be negative. The sign should be preserved after reversing the digits.
  4. Edge Cases : Consider what happens if the reversed integer exceeds the 32-bit signed integer limit.
  5. Steps to Solve:
  6. Check for Boundary Conditions : Ensure the input lies within the valid integer range.
  7. Extract and Reverse Digits :
    • Convert the absolute value of
      x
      to a string to handle its digits.
    • Reverse the string.
    • Convert the reversed string back to an integer.
  8. Preserve the Sign : Multiply the reversed integer by the sign of the original integer.
  9. Check for Overflow : After reversing, check if the resulting integer lies within the 32-bit signed integer range. If it does not, return
    0
    .
  10. Pseudocode Explanation:
    Below is the detailed pseudocode with comments for each step.
                                                
    // Function to reverse the digits of a 32-bit signed integer
    function reverseInteger(input_integer):
    // Define 32-bit signed integer limits
    minimum_32_bit_value = -2^31
    maximum_32_bit_value = 2^31 - 1
    
    // Store the sign of the input integer
    input_sign = sign(input_integer)
    
    // Get the absolute value of the input integer
    absolute_integer = abs(input_integer)
    
    // Convert the integer to a string to manipulate its digits
    integer_string = convert_to_string(absolute_integer)
    
    // Reverse the string
    reversed_string = reverse_string(integer_string)
    
    // Convert the reversed string back to an integer
    reversed_integer = convert_to_integer(reversed_string)
    
    // Restore the original sign to the reversed integer
    reversed_integer_with_sign = reversed_integer * input_sign
    
    // Check for overflow beyond 32-bit signed integer limits
    if reversed_integer_with_sign < minimum_32_bit_value or reversed_integer_with_sign > maximum_32_bit_value:
    // Return 0 if it overflows
    return 0
    
    // Return the valid reversed integer
    return reversed_integer_with_sign
    
                                            
    Detailed Steps in Pseudocode:
  11. Define Limits : Integer limits for 32-bits are defined.
  12. Preserve Sign : Store and preserve the sign of the input integer.
  13. Absolute Value : Work with the absolute value of the integer for manipulation.
  14. String Conversion : Convert the integer to a string to easily reverse its digits.
  15. Reverse Digits : Reverse the string containing the digits.
  16. Restore the Integer : Convert the reversed string back to an integer.
  17. Restore the Sign : Re-apply the original sign to the reversed integer.
  18. Check for Overflow : Ensure the result is within the allowed range of a 32-bit signed integer.
  19. Return Result : Return the appropriately signed reversed integer, or
    0
    if it overflows.
By following this methodology step-by-step, you can effectively reverse the digits of a 32-bit signed integer and handle any potential overflow issues that may arise.