Reverse Integer
To solve this coding challenge, you need to reverse the digits of a 32-bit signed integer while considering edge cases such as the range limits of a 32-bit signed integer. Here's a detailed explanation of how to approach this problem followed by the pseudocode.
Explanation
Problem Breakdown:
-
Input and Output
: You are given an integer
x
[-2^31, 2^31 - 1]
0
- 32-bit Signed Integer Range : The range for a signed 32-bit integer is from -2,147,483,648 to 2,147,483,647.
-
Sign Handling
: The integer
x
- Edge Cases : Consider what happens if the reversed integer exceeds the 32-bit signed integer limit.
- Check for Boundary Conditions : Ensure the input lies within the valid integer range.
- Extract and Reverse Digits :
-
Convert the absolute value of
x
- Reverse the string.
- Convert the reversed string back to an integer.
- Preserve the Sign : Multiply the reversed integer by the sign of the original integer.
-
Check for Overflow
: After reversing, check if the resulting integer lies within the 32-bit signed integer range. If it does not, return
0
- Define Limits : Integer limits for 32-bits are defined.
- Preserve Sign : Store and preserve the sign of the input integer.
- Absolute Value : Work with the absolute value of the integer for manipulation.
- String Conversion : Convert the integer to a string to easily reverse its digits.
- Reverse Digits : Reverse the string containing the digits.
- Restore the Integer : Convert the reversed string back to an integer.
- Restore the Sign : Re-apply the original sign to the reversed integer.
- Check for Overflow : Ensure the result is within the allowed range of a 32-bit signed integer.
-
Return Result
: Return the appropriately signed reversed integer, or
0
Steps to Solve:
Pseudocode Explanation:
Below is the detailed pseudocode with comments for each step.
// Function to reverse the digits of a 32-bit signed integer
function reverseInteger(input_integer):
// Define 32-bit signed integer limits
minimum_32_bit_value = -2^31
maximum_32_bit_value = 2^31 - 1
// Store the sign of the input integer
input_sign = sign(input_integer)
// Get the absolute value of the input integer
absolute_integer = abs(input_integer)
// Convert the integer to a string to manipulate its digits
integer_string = convert_to_string(absolute_integer)
// Reverse the string
reversed_string = reverse_string(integer_string)
// Convert the reversed string back to an integer
reversed_integer = convert_to_integer(reversed_string)
// Restore the original sign to the reversed integer
reversed_integer_with_sign = reversed_integer * input_sign
// Check for overflow beyond 32-bit signed integer limits
if reversed_integer_with_sign < minimum_32_bit_value or reversed_integer_with_sign > maximum_32_bit_value:
// Return 0 if it overflows
return 0
// Return the valid reversed integer
return reversed_integer_with_sign